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Abstract

Automatic musical instrument recognition is an important aspect of machine listen-

ing. In this project, we deal with instrument recognition in the multi-instrument

audio contexts. We evaluate the performance of a traditional machine learning

method in juxtaposition with a deep learning method in a supervised multi-label

multi-output machine learning approach. We also tune a set of analysis parameters:

{analysis window size, hop size, binarization threshold} to improve the performance.

We investigate the possibility of improving the instrument recognition performance

by using alternative data representations along with the original data. We consider

two such sets of alternative data representations: 1) LRMS (left, right, mid, side)

channel audio data derived from the stereo audio, and 2) The harmonic and residual

representations derived from the original audio. We propose two different strategies

to combine the models built using each of the data representation sets and evalu-

ate their performance. Finally, we use the best combination strategy to merge the

capabilities of individual models to improve the overall instrument recognition per-

formance. With the shortlisted set of analysis parameters and the best combination

strategy, we achieve an improvement of 14.25% in the macro f-score and 24.17%

in the exact match ratio with respect to the baseline performance reported for our

dataset.

Keywords: Musical Instrument Recognition, Multi-Instrument Audio, Deep Learn-

ing, Alternative Data Representations
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Chapter 1

Introduction

Humans have this incredible ability to identify a musical instrument just by listening

to its sound. The listening activity gets more engaging when multiple instruments

are played simultaneously. Despite the complexity of the task, the humans can still

identify the instruments up to certain number of instruments and certain mixing

configurations. The automatic instrument recognition task aims at imparting this

human ability to machines.

Of late, the world of digital media is growing at a very fast pace. It is extremely

difficult for humans to manage a database of such a size manually. In order to man-

age the audio content in them, it is important to empower the machines to identify

specific information about the audio and generate tags. Of all these information,

musical instrumentation is an important one. The knowledge of musical instrumen-

tation could give insights regarding the genre and style of music and potentially

help in segregating music content. Such tags with the instrumentation information

could also enable the users to browse through specific sounds using search queries

in text format. The knowledge about the instrumentation could also be used by the

music streaming applications to automatically equalize the audio. This capability is

also an important milestone on the way to machine listening. To this day, there is

no one stop solution for automatic musical instrument recognition and the research

continues. We would like to run a set of experiments that could possibly enhance

1
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the performance of musical instrument recognition task.

The instrument recognition problem statement itself can be thought of in single

instrument audio contexts and multi-instrument audio contexts. The methods for

instrument recognition can be widely segregated into traditional machine learning

methods and deep learning. Initially, the traditional machine learning methods were

used to train the machines to identify solo-instrument sounds. These methods were

investigated further in the context of multi-instrument sounds. The last decade

saw a rise in application of deep learning methods in machine learning problems

including instrument recognition. Along with these developments, new datasets

have been created for specific music information retrieval (MIR) tasks including

instrument recognition. Looking at all these factors, we can infer that now is a

really good time for further research in musical instrument recognition. We would

like to identify gaps and areas for improvement in the existing research works related

to instrument recognition in multi-instrument audio contexts and experiment with

methods to improve up on them.

1.1 Motivation

Socrates said “The perfect human being is all human beings put together, it is

a collective, it is all of us together that make perfection.” In our opinion, this

ideology could be extended to the instrument recognition models as well - “The

perfect instrument recognition system is all the instrument recognition models put

together”. This idea has been the main motivation behind our thesis. Even when we

consider a single dataset, different classifiers (like support vector machines, decision

trees, k-nearest neighbour classifiers) learn differently from the same dataset which

is also reflected in the difference in the results obtained by each of them. Each

classifier could possible gain specific instrument recognition capabilities that no other

classifier could achieve. In fact, the ensemble machine learning methods make use of

these unique capabilities of group of such classifiers and combine them into a hybrid

classifier in an effort to improve the overall performance. Apart from using different

classifiers on the same dataset, we could also consider deriving additional datasets
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from the original dataset. For example, if we have stereo audio files, we could extract

the left, right, mid and side channel data and build separate datasets for each of

the channels. Such datasets could possibly project a different information on to the

recognition models. In this thesis, we are interested in investigating the impact of

using alternative representations of the dataset on instrument recognition with both

traditional machine learning method and advanced deep learning method.

[Wiggins, 2009] points out that none of the datasets that we use for MIR tasks is

music, but are merely representations of music, and are rather incomplete. The

author supports the idea further by adding that the score, the sheet music, the

midi files and even the audio files, taken alone or combined, do not define music

completely. He further emphasizes that music is a phenomenon that occurs in the

mind of a listener. With regard to this specific research problem of automatic

instrument recognition, we are trying to impart the instrument recognition skills of

a human to a machine. The difference here is that the input data for humans in

music but the input data for the machines is something which is a representation

of music and not the music itself. This difference makes the automatic instrument

recognition task in machines a tough problem to solve. The concept of glass-ceiling

effect comes into the discussion here since we are dealing with the representation of

music rather than music itself and there is only limited information that one can

extract from such an incomplete representation of music. A part of the MIR research

community, believes that no matter how good the algorithm is, the performance in

any machine listening task can not get better beyond a certain point because of this

glass-ceiling effect.

At this juncture, we would like to introduce an analogy between automatic instru-

ment recognition and a blind person trying to understand the figure of an elephant

by feeling it though his hands in specific places (note that the elephant won’t allow

anyone to touch everywhere!). The blind person could touch a specific part of the

elephant and believe that the whole elephant is the part that he/she touched. We

can now understand incomplete nature of this blind person’s understanding. Now,

let us invite other blind people to touch the elephant. They touch different parts of
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the elephant and develop their own limited understanding of the figure of elephant.

We let them talk and share ‘their versions of elephant’. After this discussion, the

group of blind people have a better understanding of the elephant than they had

before. This is exactly what we intend accomplish in this thesis. We use multiple

instrument recognition models built out of different representations of the dataset

and analyze results obtained using each of the models and their combinations. We

would like to build up on the strengths of each model by combining them. These

are merely our efforts to see if we can improve the automatic instrument recognition

performance. However, we need to realize that, even with a million blind people

discussing their experiences with the elephant, none of them will fully understand

the figure of the elephant, let alone understanding the elephant as an individual

beyond the body physique. Akin to how the blind people discuss to understand

the elephant’s physique better, we are interested in combining the intelligence of

individual models and studying the performance of the resulting combinations.

1.2 Objectives

The following are the list of goals that we would like to accomplish through this

thesis:

• To juxtapose and compare the performance of a traditional machine learning

method and a deep learning method in the context of instrument recognition

in multi-instrument audio contexts.

• To illustrate the advantages of using alternative representations of the data

along with the original data in improving the performance of instrument recog-

nition.

• To propose a combination strategy that could combine multiple models built

from different data representations to improve the overall performance.
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1.3 Structure of the Report

The rest of the thesis is organized as follows. We review the-state-of-the-art methods

used in instrument recognition in Chapter 2. We segregate these approaches into

traditional method and deep learning method and review them in chronological

order of their application. In particular, we highlight the research work related to

instrument recognition in multi-instrument audio contexts and identify gaps/ areas

for improvement. In Chapter 3, we delineate the methodology used in our thesis

with emphasis on the chosen dataset, experiment set-up and evaluation criteria. The

experiments cover a wide range of configurations of dataset: analysis window size,

hop size and binarization threshold along with merging strategy for LRMS channels

and harmonic and residual component data representations with the application of

traditional method as well as deep learning. In Chapter 4, we report the results

obtained from each of our experiments and discuss our inferences. Chapter 5 is

dedicated to conclusion and future work. In this chapter, we highlight the findings

and contributions of our work and give directions to future work. We share the

link to the repository containing the source code for reproducing our results in the

Appendix.



Chapter 2

State of the Art

In this section, we review the state-of-the-art practices used in automatic musical

instrument recognition so far. Some of the terminologies used in the literature -

“polyphony”, “polytimbral” are a bit ambiguous and we would like to clear this up

before going further. “Polyphony” can be interpreted as a phenomenon wherein mul-

tiple notes are being played simultaneously on the same instrument (for e.g. left and

right hand parts in a piano). It can also represent a use case wherein the notes are

being played simultaneously on multiple instruments. In most of these references,

the word "polyphony" is used in the same context as "multi-instrument". Hence,

the confusion. The word polytimbral, on the other hand, means multiple timbres.

A single instrument can produce sounds of different timbres based on the way it is

played. For example, a violin played in tremolo style and a violin played in pizzi-

cato style have remarkably different timbres. [Agostini et al., 2003] reports that the

instrument recognition performance improves when pizzicato-sustain discrimination

is considered rather than instrument-wise or instrument-family-wise discrimination

for categorizing data. Hence, it is more appropriate to segregate the instrument

sounds based on timbre rather than the instrument source. The problem with the

timbre based approach is that the dataset labels need to inherently include this

information (e.g. ‘violin pizzicato’ rather than just ‘violin’ wherever appropriate).

But, in most of the cases (including ours), the instrument sound datasets are labeled

6
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only with instrument names, devoid of any timbre related information. Therefore,

for this thesis, we consider all the sounds produced by a particular instrument to be

belonging to one category, regardless of the timbre. Throughout the report, we use

the word “multi-instrument” instead of “polyphony” or “polytimbral”, since we deal

with instrument recognition in multi-instrument audio contexts.

The earliest published research works in instrument recognition focus on

identification of single instrument sounds in monophonic recordings (e.g.

[Kaminsky and Materka, 1995], [Martin and Kim, 1998]). They report the use of

traditional machine learning methods like Artificial Neural Network (ANN), Nearest

Neighbor Classifier (NNC) and Support Vector Machines (SVM). To train the classi-

fiers, these methods use handcrafted features that are extracted from the raw audio.

During the earliest research efforts, only the time domain features like short-time en-

ergy and the zero crossing rate were considered, as in [Kaminsky and Materka, 1995].

Soon, the researchers started including features from spectral domain (e.g. spec-

tral centroid, spectral roll-off, spectral flux, spectral flatness) and eventually the

cepstral domain (MFCCs) features as reported in [Martin and Kim, 1998] and

[Marques and Moreno, 1999], respectively. The feature selection strategies like

Principal Component Analysis (PCA) were very commonly used to deal with the

“curse of dimensionality”. Some of the notable large scale datasets for the instru-

ment recognition are MIS ([UIOWA, 1997]); RWC ([Goto et al., 2002]); IRMAS

([Bosch et al., 2012]) and MedleyDB ([Bittner et al., 2014]).

The deep learning architectures were already realized in 1990s, but their implemen-

tations were computationally expensive. In 2009, the Graphics Processing Units

(GPUs) were incorporated in the deep-learning systems and [Raina et al., 2009] de-

termined that this increased the computational speed by around 100 times. From

this stage onward, the GPU based deep-learning systems got more popular. For the

large scale datasets, it is advantageous to use deep-learning methods. From Fig. 1,

it is clear that the performance of deep learning systems improve with more data,

while the performance of traditional machine learning algorithms do not increase

with increase in dataset size beyond a threshold size. There is a substantial increase
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Figure 1: Performance of Deep Learning Vs. Traditional Machine Learning Algo-
rithms. Image taken from [Mahapatra, 2018]

in number of deep learning articles in MIR publications since 2015 (6 in 2015 and

16 in 2016) as reported in [Choi et al., 2017]. One of the goals of our work is to jux-

tapose and compare the performance of traditional machine learning method and

deep learning method for musical instrument recognition in multi-instrument audio

contexts.

2.1 Solo-Instrument Audio Context

The human ability to recognize instruments in a mixture of sounds

largely relies on our memory of the individual instrument sounds and

the ability to recognize them individually. Instrument recognition re-

search was first investigated in solo-instrument audio contexts. The

studies [Kaminsky and Materka, 1995], [Fujinaga, 1998], [Martin and Kim, 1998],

[Kostek, 1998], [Fraser and Fujinaga, 1999], [Fujinaga and MacMillan, 2000] and

[Kaminskyj, 1998] address the instrument recognition using isolated notes of

different pitches with one example from each instrument. The studies

[Dubnov and Rodet, 1998], [Marques, 1999], [Brown, 1999], [Martin, 1999] and

[Brown et al., 2001] address a relatively more realistic use case : instrument recog-

nition with monophonic phrases. The Table 2 and Table 3 contain the results of

instrument recognition with isolated notes and monophonic phrases, respectively.

These tables clearly indicate that the performance numbers fell when we moved

from the isolated note context to monophonic phrase context. The more closer we
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Figure 2: Performance of instrument recognition with isolated notes. [Table taken
from [Eronen et al., 2001]]

Figure 3: Performance of instrument recognition with monophonic phrases. [Table
taken from [Eronen et al., 2001]]

get to the real world use case, the harder the research problem gets. Going by this

logic, instrument recognition in multi-instrument audio contexts will be even harder

than in monophonic contexts. [Herrera-Boyer et al., 2003] extensively reviews the

state-of-the-art methods used in automatic classification of isolated musical instru-

ment sounds. MFCCs are reported to be one of the best set of features for automatic

musical instrument recognition in [Martin, 1999] and [Eronen et al., 2001].

2.2 Multi-instrument Audio Context

In case of the multi-instrument audio contexts, the goal is to identify all the instru-

ments present in the mix. [Fuhrmann et al., 2012] identifies three methodologies

used for instrument recognition in multi-instrument contexts:
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• Pure Pattern Recognition The recognition algorithms are run on multi-

instrument sound samples directly, to look for individual instrument or group

of instruments without much pre-processing as seen in [Essid et al., 2006].

• Enhanced Pattern Recognition The multi-instrument samples are pre-

processed using signal processing based methods like source separation or

multi-pitch estimation before running the instrument recognition algorithms

on them as implemented in [Heittola et al., 2009].

• Template Matching The distances between the abstracted class representa-

tions and multi-instrument samples are evaluated to arrive at the class labels.

[Cont et al., 2007] makes use of this approach.

[Fuhrmann et al., 2012] reviews most of the state-of-the-art approaches covering all

the above three methodologies and reports the dataset description, recognition al-

gorithm and the results. Fig. 4 contains this information.

Instrument recognition in the multi-instrument audio contexts is a multi-class multi-

label machine learning problem : each sample contains multiple labels, with each

label corresponding to one of the instrument categories. [Madjarov et al., 2012]

points out the following two types of approaches to deal with the multi-class multi-

label problems:

• Algorithm Adaptation This approach adapts and extends the single label

classification algorithms to multi-label scenarios. Traditional machine learning

algorithms like decision trees, adaboost and ranking ranking support vector

machines have been adapted for use in multi-label classification scenarios.

• Problem Transformation The problem transformation approaches trans-

form the multi-label classification problems into multiple single label multi-

class problems. The single label classification algorithms like Support Vector

Machines (SVM) could then be applied directly to this transformed problem.

The progress in MIR research, in general, critically depends on availability of good

datasets. A good dataset is large in size (the larger the better), well annotated,
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Figure 4: Comparative view on the approaches for recognizing pitched instruments
from polytimbral data. Asterisks indicate works which include percussive instru-
ments in the recognition process. polyphonic density (Poly.), number of categories
(Cat.), type of data used (Type), the name of the data collection (Coll.), the clas-
sification method (Class.),imposed a priori knowledge (Apriori), any form of pre-
processing (PreP.) and post-processing (PostP.), and the number of entire tracks for
evaluation (Files). Abbreviations for the evaluation metric refer to Accuracy (Acc.)
and F-measure (F). Furthermore, the legend for musical genres include Classical
(C), Pop (P), Rock (R), Jazz (J), World (W), and Electronic (E). The three blocks
are pure, enhanced pattern recognition, and template matching with respect to the
recognition approach. [Table taken from [Fuhrmann et al., 2012]]

contains truthful records obtained using the right practices and diverse enough for

the intended purpose. For example, an ideal dataset for musical instrument recog-

nition is the one which covers most of the musical instruments recorded in different

environments, played in different styles and genres, perhaps by different artists. The

lack of publicly available good quality datasets has always been a big challenge for

the MIR research community. In the Fig. 4, we notice that large number of datasets

(column ‘Coll.’) are ‘pers.’ which indicate that personal audio collections were used

for the respective research activities. This is a set-back because the reported results

on such datasets could not be validated or challenged by other researchers.

As discussed earlier in this section, the initial instrument recognition efforts were

in isolated instrument contexts. The datasets like MIS ([UIOWA, 1997]),RWC

([Goto et al., 2002]) and MUMS ([Opolko and Wapnick, 1989]) were created for this
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purpose. At that time, there were no publicly available datasets for instrument

recognition in multi-instrument contexts. The researchers tried linearly combin-

ing the sounds from isolated instrument collection to create multi-instrument au-

dio contexts as in [Heittola et al., 2009] and [Burred et al., 2009]. Using this ap-

proach, the instrument recognition accuracy was only around 59% for audio sam-

ple with six-note polyphony in [Heittola et al., 2009] and 61.4% with four voices in

[Burred et al., 2009]. It is clear that there is lot of scope for improvement. Also,

in these two studies, the training set and test set, both of them were generated by

linearly mixing the isolated instrument samples from RWC dataset. The dataset

created in this way is far too different from the real world music and we could ex-

pect even lower performance numbers if these methods are used for real world music.

As pointed out in [Bosch et al., 2012], the real world music comprises of effects like

reverbs and delays which make the mix more complex than the artificially generated

mixes resulting from the random linear combination of sounds.

Of late, MIR community has been putting efforts in creating large-scale datasets

which could be potentially used for musical instrument recognition in multi-

instrument audio contexts, among several other tasks. One of the most recent efforts

being the Freesound Datasets [Fonseca et al., 2017] which is “a platform for collabo-

rative creation of open audio collections labeled by humans and based on Freesound

content" [Font et al., 2013]. Though the Freesound Datasets do not primarily focus

on musical instruments, but it has some samples with instrumentation informa-

tion. IRMAS dataset, published by [Bosch et al., 2012], consists of real world music

samples with annotations for predominant instrument in the mix. IRMAS dataset

covers 11 pitched instruments. The training data comprises of 6705 audio files of

around 3 second duration with a single predominant instrument. The testing data,

spanning over 2874 excerpts, interestingly, comprises of more than one predominant

instrument. MedleyDB, published by [Bittner et al., 2014], consists of around 122

full-length songs of duration ranging from 20 seconds to 600 seconds. Additionally,

the annotations for instrument activation and stems 1 for individual instrument

categories are provided. There is a dedicated stem for each instrument category.
1Stems are the constituent audio tracks of a mix, which, on combining, gives the entire mix.
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MedleyDB contains music from 9 different genres making it diverse.

[Bosch et al., 2012] evaluates performance of instrument recognition using different

segregation and classification algorithms on IRMAS dataset. Source separation is

implemented as a pre-processing step. The novelty in this paper is the use of panning

information to split the track into left (L), right (R), mid (M=L+R) and side (s=L-

R) streams. Using the data from LRMS channels improves the performance of

predominant instrument recognition by around 19 p.u. Data pre-processing using

a source separation method called FASST (A Flexible Audio Source Separation

Framework) is also investigated in this paper. FASST is a computationally complex

algorithm which improves the performance score by around 32 p.u. The authors

suggest using the LRMS channel data as one of the easiest ways to improve the

performance of instrument recognition task.

2.3 Towards Deep Learning

One of the main challenges of using the traditional machine learning methods is

feature engineering. The researchers need to have the domain knowledge to craft

out a set of features that formed a very good representation of the raw data specific

to the targeted application. But, here the possibilities are endless because one could

think of infinitely many feature definitions relevant to the application context. Deep

learning methods relieve us from this dilemma since these algorithms are designed to

identify the patterns in any data without the need for feature engineering. Recurrent

Neural Networks (RNN) and Convoluted Neural Networks (CNN) are the two most

popular deep learning architectures. RNNs have the “memory" and can be used

to model long time dependencies (e.g speech, text) suitable for sequential inputs

while CNNs can be used for finding patterns in highly correlated local contexts (e.g

images, video). A tutorial deep learning approaches for MIR applications presented

in [Choi et al., 2017] is quite exhaustive and informative.

With regard to the application of deep learning architectures to musical instrument

recognition, we mainly review two reference papers. [Li et al., 2015] presented an
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Figure 5: Baseline performance of instrument recognition for MedleyDB. [Table
taken from [Li et al., 2015]]

end-to-end CNN system for automatic musical instrument recognition by directly

using the raw audio as the input. They compare the instrument recognition per-

formance of CNN system and traditional machine learning algorithms built around

MFCC features on MedleyDB dataset. Their performance numbers are reported in

the Table 5. They report an exact match percentage of 25.78% with deep learning

and 17.53% with traditional machine learning approaches on the test set evaluation.

We note that even the f-measures get better in case of the deep learning approach.

We consider the results reported by [Li et al., 2015] as our baseline.

The other important reference paper in deep learning topic with regard to this thesis

is [Han et al., 2017]. [Han et al., 2017] proposes CNN for predominant instrument

recognition with IRMAS dataset and uses the mel-spectrogram of the audio as in-

put. They also experiment with the hyper-parameter tuning. They report that the

deep CNNs perform as good as the traditional machine learning algorithms, if not

better. Their CNN architecture is depicted in the Fig. 6. The main difference in

architectures between [Han et al., 2017] and [Li et al., 2015] is that the former uses

mel-spectrogram of the audio segment as the input to the CNNs while the latter

uses the raw audio as input.

2.4 Conclusion

In this thesis, we consider the performance of automatic instrument recognition in

[Li et al., 2015] as the baseline and explore ways of making it better. We would like

to juxtapose and compare the performance of traditional machine learning method

and deep learning method. We choose MedleyDB as our dataset. In our opinion,
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Figure 6: A deep CNN architecture used by [Han et al., 2017] for instrument recog-
nition. [Figure taken from [Han et al., 2017]]

among the datasets available as of this day, MedleyDB is the most suitable dataset

for instrument recognition task in multi-instrument audio contexts for two reasons:

1) The diversity of genres and instruments involved; 2) The instrumentation in-

formation is well annotated. Though the dataset by itself is small (as it contains

only 122 songs of duration ranging from 20 seconds to 600 seconds), we could not

find any larger datasets with this quality of data. Surprisingly, we could not find

many projects in musical instrument recognition which make use of this dataset.

The dataset labels are instrument-wise activation confidence scores which indicate

the probability of the presence of the instrument in the audio clip at a given in-

stant. Therefore, we have a multi-output multi-class regression problem here. We

treat this problem as a pure pattern recognition task by taking in the audio data

directly without any pre-processing like instrument source separation. Additionally,

this dataset comes with stems of individual instrument tracks which we intended to

make use of. However, this could not be done within the scope of this project, but

we would like to share some insights in this regard for future work later.

With regard to the traditional machine learning approach, we transform the multi-

output multi-class regression problem into multiple single output multi-class regres-

sion problems. On each of these single output regression problems, use the support

vector regression (SVR) models because the support vector machines (SVM) are

established as one of the best classifiers in the state-of-the-art instrument recogni-

tion literature discussed earlier. The time, frequency and cepstral domain features

are extracted using Essentia’s music extractor, thanks to [Bogdanov et al., 2013].
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For the deep learning part, we investigate the performance with mel-spectrogram

as input to CNNs using the architecture published by [Han et al., 2017]. Also, we

study the effect of using different representations of audio data in improving the

performance. In this regard, consider two different representation sets : 1) LRMS

channel data; and 2) the harmonic and residual components of the audio. The mo-

tivation to use LRMS channel data came from [Bosch et al., 2012] which claims a

performance improvement of 19 p.u in case of IRMAS dataset by making use of

panning information. The motivation for using the harmonic and residual compo-

nents came from experimental trials of music instrument recognition in single instru-

ment sounds from Good-Sounds dataset [Romani Picas et al., 2017] conducted by

[Shenoy Kadandale, 2018]. During these trials, we noticed that some instruments

were recognized better in the harmonic model while some instruments were identi-

fied well in the residual model. Our idea is to build instrument recognition models

for each of the data representations and combine them into a hybrid model which

cherry-picks the strengths of each constituent model. The combination strategy is

discussed in detail in the Section 3.5 of Chapter 3. As an extension to the experi-

mentation in [Li et al., 2015], we investigate the effect of change in analysis window

size and hop size on the exact match ratio and the f-measure metrics.



Chapter 3

Methodology

In this chapter, we describe the methodology applied in this project. To begin

with, we discuss the data pre-processing, where we explain how the data is prepared

for further analysis. In the next sections, we discuss our implementation of tra-

ditional machine learning algorithms and deep learning CNNs. Then, we describe

the evaluation metrics which indicate the performance of a particular method in

the instrument recognition task. Finally, we explain how we intend to make use

of the two alternative representations of the data - 1) LRMS channel data and 2)

harmonic and residual components of the audio, to improve the performance of both

the traditional and deep learning methods.

3.1 Data Pre-processing

MedleyDB provides us the audio (in WAV format) files for each of the 122 songs

along with their respective instrument annotations. The instrument annotations

are provided in the form of activation confidences for each instrument present in a

particular mix. The activation confidences indicate the probability of the instru-

ment being active in the mix at a particular instant. The activation confidences

were determined using a standard envelope tracking technique on each stem in-

volving half-wave rectification, compression, smoothing and down-sampling. More

information on this procedure can be found in [Bittner et al., 2014].

17
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The dataset does not come with predefined splits for training data and testing

data. However, to compare the results of our experiments with the baseline, it

is necessary to use the same set of training and testing data that was used by

[Li et al., 2015]. The full-length audio clips need to be sliced into smaller segments,

each of which becomes a sample in our machine learning problem. Just as it was

done by [Li et al., 2015], we assign 80% of these samples for training and 20% for

testing. [Li et al., 2015] does not explicitly share the dataset splits, but directs us to

an algorithm that splits the dataset into training and testing components in the best

possible way. This splitting algorithm was published by [Sechidis et al., 2011]. It

takes into account two main considerations : 1) There shouldn’t be any labels in the

test set that didn’t occur in the training set 2) There shouldn’t be segments belong-

ing to the same audio clip in both the training set and the test set. [Li et al., 2015]

considers one second long non-overlapping segments as samples. However, we in-

vestigate the performance of instrument recognition with the segment lengths (in

seconds) : {1, 2, 3, 4, 5} with hop factors 1 of 25%, 50% and 100%. Also, unlike

in [Li et al., 2015], we create a dataset for each of the LRMS channels by using

the panning information in the original audio. L and R channel data are directly

available from the stereo audio. M is obtained by averaging out the L and R. The

difference between L and R gives us the side channel data.

For each of the segments, the global label for each instrument was determined by

taking the maximum of moving average of the activation confidence values for that

particular instrument. The annotations cover 82 instruments. However, all the

instruments are not equally distributed. We group all the instruments appearing

in less than 20 songs into ’OTHER’ category. As a result, we have 11 classes for

classification: acoustic guitar, clean electric guitar, distorted electric guitar, drum

set, electric bass, fx/processed sound, OTHER, piano, synthesizer, violin and voice.

1We define hop factor as the percentage of number of samples between the starting points of
consecutive window frames with respect to the window size.



3.2. Traditional Machine Learning 19

3.2 Traditional Machine Learning

We start our instrument recognition task with the traditional machine learning ap-

proach. In this approach it is necessary to extract a set of features from the raw data

relevant to instrument recognition. We use Essentia’s music extractor to extract the

low-level features pertaining to the temporal, spectral and cepstral domains, from

each of the raw audio samples. More details regarding these features can be found in

[Bogdanov et al., 2013]. The labels for each sample is a set of activation confidence

scores, each one corresponding to respective instrument. We would like to treat this

as a regression problem such that the predictions for the test set will also be a set

of activation confidence scores. Next step is to use Support Vector Regressor (SVR)

to fit the training data and then predict the labels of the test set. A threshold is

required to binarize the predicted scores for each instrument into ‘is present’ (if the

predicted score is greater than threshold) or ‘not present’ (if the predicted score is

lesser than threshold) case. We investigate the performance of a traditional machine

learning method with different configurations of data. By the word ’configurations’,

we are referring to the duration of the sample, the extent of overlap in samples when

they were sliced from the parent audio clip and even the threshold to binarize the

continuous labels. The idea is to pick the configuration which gives the best result

and use this configuration to do further experiments which are discussed in the next

sections.

3.3 Deep Learning

[Li et al., 2015] uses raw audio as the input to the CNNs. This makes the training

stage time consuming since raw audio is bulky (44100 samples in a second). Instead,

we use the mel-spectrogram of the audio clip as input, just like the implementation

of deep learning method in [Han et al., 2017] and compare the performance with

the baseline. We use the configuration of the data that gives best results for the

experiments with traditional machine learning approach. We apply the threshold

from the selected configuration to binarize the labels before feeding the data to
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Figure 7: ConvNet structure proposed by [Han et al., 2017]. [Table taken from
[Han et al., 2017]]

CNNs.

We adapt the CNN architecture published by [Han et al., 2017] to our use case. The

code implementing this architecture, provided by [Pons et al., 2017], is used. The

Tab. 7 contains the details regarding the architecture proposed by [Han et al., 2017].

This architecture makes use of multiple fixed-length rectangular filters of size 3×3

with a stride size of 1. [Han et al., 2017] deals with single label output in the training

phase since IRMAS dataset has only one predominant instrument for every sample

in the training set. However, our training data samples contain multiple labels.

Hence, we make two main changes with regard to the reference architecture : 1) we

use the sigmoid layer instead of softmax layer as the final layer, 2) we use the binary

cross entropy as the loss function instead of categorical cross entropy. The resulting

predictions are continuous numbers between 0 and 1 for each label. We use the same

threshold from the shortlisted data configuration to binarize the predicted labels.
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3.4 Evaluation Metrics

The evaluation scheme is based on comparison between the predicted labels and the

ground truth for the samples from the test set. To assess the performance of all

our approaches in instrument recognition, we look at the four metrics : exact match

ratio, instrument-wise f-score, the overall micro and macro f-score. The mathemati-

cal expressions used to define these metrics have been adapted from [Sorower, 2010]

and [Bosch et al., 2012].

Let T be the multi-label dataset containing n multi-instrument sound samples

(xi, Yi), 1 ≤ i ≤ n, xi ∈ X, Yi ∈ Y = {Yi}, with Yi = {0, 1}k = {Yij} for

j = 1...k with an instrument-set I and |I| = k. Let h be a multi-label classifier and

Zi = h(xi) = {0, 1}k = {Zij} for j = 1...k be the set of predictions for xi determined

by h.

The exact match ratio indicates the percentage of instances where all the labels were

predicted correctly. In a multi-label multi-class problem this measure can be really

harsh owing to the difficulty of getting all the labels right without accounting for

partially correct predictions. In fact, the baseline exact match ratio for this dataset

was 25.78% reported by [Li et al., 2015].

Exact Match Ratio =
1

n

n∑
i=1

Î(Yi = Zi)

where Î is the indicator function.

To understand f-score, we need to understand precision and recall. Precision is the

ratio of number of true positives to the number of predicted condition positives.

Recall is the ratio of number of true positives to the number of condition positives.

The condition positives are the real positive cases in the data. The f-score is the

harmonic mean of precision and recall. Let tpj be true positives, tnj be true nega-

tives, fpj be false positives and fnj be false negatives for each instrument Ij in I.
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For each instrument, the precision and recall can be determined as:

Pj =
tpj

tpj + fpj
=

n∑
i=1

YijZij

n∑
i=1

Zij

Rj =
tpj

tpj + fnj

=

n∑
i=1

YijZij

n∑
i=1

Yij

The instrument-wise f-score (F1 measure) can then be obtained using :

Fj =
2PjRj

Pj +Rj

Now we can consider macro and micro averages of these metrics for the entire pre-

diction set including all the instrument labels. The macro average is the average of

precision and recall values determined separately for each instrument label.

Pmacro =
1

|I|

k∑
j=1

Pj, Rmacro =
1

|I|

k∑
j=1

Rj

In case of the micro average strategy, the average is taken directly over the instances,

which results in giving more weight to the instruments which are found in larger

number of instances.

Pmicro =

k∑
j=1

tpj

k∑
j=1

(tpj + fpj)

=

k∑
j=1

n∑
i=1

YijZij

k∑
j=1

n∑
i=1

Zij

Rmicro =

k∑
j=1

tpj

k∑
j=1

(tpj + fnj)

=

k∑
j=1

n∑
i=1

YijZij

k∑
j=1

n∑
i=1

Yij
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Hence the macro and micro F1 are defined as :

Fmacro =
2PmacroRmacro

Pmacro +Rmacro

, Fmicro =
2PmicroRmicro

Pmicro +Rmicro

3.5 Alternative Data Representations

Most of the related research work in this topic, work with the original raw audio

in mono format. Mono audio is just one way of representing the stereo audio, but

there can be other alternative representations that could be derived from the source.

One of the main goals of this thesis is to see if these alternative representations can

improve upon the instrument recognition performance achieved using mono raw au-

dio representation alone. We consider two such sets of alternative representations

- 1) LRMS components of the stereo audio, and 2) harmonic and residual compo-

nents of original audio. The idea is to treat these alternative representations as

separate datasets, train the classifiers on each dataset, evaluate over respective test

sets and then merge the predicted labels into a final set of labels such that there is

an improvement in the evaluation metrics. Before merging, we binarize the contin-

uous predicted labels of each alternative representation in the set with a particular

threshold. During the binarization, values above the threshold are set to 1 and those

below the threshold are set to 0.

With regard to merging the predictions obtained from different representations, we

investigate two such merging strategies : hybrid max combination strategy and

hybrid weighted combination strategy. For predicting the label for a particular

instrument, the hybrid max combination strategy only considers the decision of the

classifier which got the highest f-score on the training set evaluation of a particular

representation set (eg LRMS). Unlike the hybrid max combination strategy, the

hybrid weighted combination strategy considers the predictions of all the classifiers

and assigns the label supported by the majority. Let R = {Rm}, for 1 ≤ m ≤M be

one of the alternative representation sets of length M i.e |R| = M . Let D = {DRm}

be the set of training set samples obtained from each of the representations in the
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set R. Let T = {TRm} be the set of test set samples obtained from each of the

representations in the set R. Let C = {Cm} be the set of classifiers such that

Cm is trained on DRm . Let I = {Ij}, for 1 ≤ j ≤ k be the instrument label set

with |I| = k. When the classifiers in C are evaluated on the respective training

sets in D, we compute macro f-scores for a particular instrument Ij in each of the

{DRm} and get Fj = {Fmj
}. Let these scores be normalized to Wj = {Wmj

}.

Let pj = argmaxm(Wj). Let Zj = {Zmj
} be the label for instrument Ij ∈ I as

predicted by each of the classifiers in the set C. In case of hybrid max combination

strategy, the label for Ij for the samples in T is Zpj} without any consideration for

the predictions by other classifiers in the representation set. However, in case of the

hybrid weighted combination strategy, the labels for instrument Ij for the samples

in T are predicted as
[ M∑
m=1

Zmj
.Wmj

]
where ‘[ ]’ is nearest integer function. This

procedure is extended for all Ij ∈ I. Suppose the normalized scores are {0.3, 0.1,

0.2, 0.4} and the predictions for the instrument Ij in a sample by these 4 classifiers

are {0, 0, 0, 1}. We notice that the label ‘0’ gets support of 0.6 (= 0.3 + 0.1 +

0.2) and the label ‘1’ gets the support of 0.4. Hence, the majority vote criterion

would finally assign the label ‘0’ for the instrument Ij in that sample. Note that

the hybrid max combination strategy would have assigned the label ‘1’ which was a

prediction by the single highest weighted classifier C4 in this set for instrument Ij

in that sample.

3.5.1 Preliminary Experiments

The motivation to investigate the effect of incorporating LRMS components of the

stereo audio came from [Bosch et al., 2012]. [Bosch et al., 2012] reports that using

the panning information (LRMS data) alone improves the instrument recognition

results by 19 p.u with regard to the IRMAS dataset. We would like to see if it holds

true in case of MedleyDB.

The motivation to analyze instrument recognition in the harmonic and residual com-

ponents of the dataset came from an experiment that we conducted on Good-Sounds

dataset. This dataset was published by [Romani Picas et al., 2015]. It contains
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Figure 8: Confusion matrices for original (top left), sinusoidal (top right) and resid-
ual (bottom) datasets. Figures taken from [Shenoy Kadandale, 2018]

monophonic recordings of single notes and scales. The instrument set involved in

this dataset are bass (bas), cello (cel), clarinet (cla), flute (flu), oboe (obo), piccolo

(pic), saxophone (sax), trumpet (tru), violin (vio). We chose a subset of this data

as this was supposed to be a simple experiment. This subset consisted of 159 sam-

ples from each instrument category which were randomly selected. The training set

and test set were again randomly generated by splitting the chosen subset in 80%-

20% ratio. Our experiment was to track the instrument recognition performance for

each of the instrument in different representations of data. We had chosen original

dataset and datasets formed by its sinusoidal and residual components as the three

different representations of the dataset. The Python Notebook conducting the ex-

periment and analyzing the results has been shared by [Shenoy Kadandale, 2018].

The Fig. 8 shows the confusion matrices obtained for the original, sinusoidal and
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residual datasets. This experiment achieves an overall accuracy of around 60% for

original and sinusoidal datasets and around 50% for the residual datasets. The

confusion matrices show that the sinusoidal models perform better than the original

models for flute (sinusoidal model accuracy=14/32, original model accuracy=11/32)

and violin (sinusoidal model accuracy=22/32, original model accuracy=11/32, al-

most double!). Residual models perform better than the original models for bass

(residual model accuracy=29/32, original model accuracy=28/32), piccolo (resid-

ual model accuracy=30/32, original model accuracy=23/32) and trumpet (residual

model accuracy=28/32, original model accuracy=27/32). The experiment reveals

that each of the representation helps in identifying certain instruments better. In

our work, we investigate this with regard to the MedleyDB.

It is clear that the alternative representations have rich source of information that

could potentially be used to improve the overall performance of instrument recog-

nition. We use the hybrid weighted combination strategy that we applied to LRMS

models discussed earlier in this chapter, to combine the models built using the alter-

native data representations. We then study the performance of such combinations.



Chapter 4

Experiments and Results

In this chapter, we present the results of all the experiments that we conducted with

regard to automatic instrument recognition using MedleyDB. Firstly, we investigate

the performance of a traditional machine learning method on original dataset in mul-

tiple configurations. We define the configuration of the dataset by four parameters

: the analysis window size, the hop size during the segmentation of the full length

audio and the threshold for binarizing labels along with the merging strategies for

combining the results from LRMS datasets. The configuration which gives the best

macro f-score is chosen for further experiments. In the next section, we investigate

the variation of instrument-wise f-score for different analysis window sizes and hop

sizes but with the threshold from the shortlisted configuration. Next, we report the

performance numbers - instrument-wise f-score, exact match ratio, macro and micro

f-score obtained using deep learning method with the chosen configuration. Further,

we discuss the performance numbers that we obtained with regard to the harmonic

and residual datasets with the traditional machine learning method as well as deep

learning method with the chosen configuration. Further, we combine specific models

and evaluate the performance of certain model combinations. Finally, we tabulate

the best of our results and compare it with the baseline.

27
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4.1 Experiment 1: Traditional machine learning

method on original dataset

Multiple datasets are created from the original audio files of MedleyDB based on

the analysis window size, hop size and channel type (LRMS). We randomly played

samples from the original full-length audio and found that some instrument sounds

lasted for about a second (mostly percussive) and some lasted for around 5 seconds

(mostly the melodic instruments on sustain). For this reason, we consider the anal-

ysis window sizes of length (in seconds) {1, 2, 3, 4, 5}. We choose the hop sizes

from {25%, 50% and 100%}. A 100% hop size means that the windows are non-

overlapping. The channels Left (L), Right (R), Mid (M) and Side (S) are considered.

From each of these datasets, all the low-level features belonging to the temporal,

spectral and cepstral domains are extracted using Essentia. The support vector re-

gressors (SVR) are used to fit the training data in each of these datasets and predict

instrument activation confidences for the respective test data. The predictions as

well as the ground truth are binarized using different threshold values between 0.3

and 0.7. Firstly, the macro f-score and exact match ratio are estimated for the mid

(M) channel datasets for all these threshold values. The mid channel corresponds to

the mono format version of the stereo audio. Next, each of the merging strategies -

hybrid max and hybrid weighted, are applied separately to combine the labels of the

LRMS datasets into a hybrid label set. The performance of the merging strategies

is estimated in terms of macro f-score and exact match ratios for all the threshold

values. The Fig. 9 represents the macro f-scores for the original dataset in different

window configurations, thresholds and merging strategies. The Fig. 10 represents

the exact match ratio for the original dataset in different window configurations,

thresholds and merging strategies. The analysis window configuration is depicted

as the title in each of the subplots in the format {window size}_h{hop%} in Fig. 9

and Fig. 10.
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Figure 9: Macro f-scores obtained using traditional machine learning method on
test set of the original dataset with different configurations. The shortlisted best
configuration - 3s_h25 is highlighted in green.
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Figure 10: Exact match ratio obtained by traditional machine learning method on
test set of the original dataset with different configurations. The shortlisted best
configuration - 3s_h25 is highlighted in green.
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4.1.1 Effect of analysis window size

From the Fig. 9 and Fig. 10, it can be seen that the macro f-score nd exact match

ratio improves with increase in the analysis window size. The window size of length

5 seconds has the highest performance metrics. But, we need to keep in mind

that larger analysis window results in smaller the number of samples in dataset. A

better performance metric in case of larger windows can also indicate the possibility

of over-fitting. The macro f-score numbers are increasing with window size in all the

cases. But, Fig. 10 shows that the exact match ratio saturates around 0.32 from

the window size of length 3 seconds onward for 25% hop ratio and hybrid weight

combination strategy. Hence, we would like to consider 3s as the best window size.

4.1.2 Effect of hop size

The hop size in our thesis is expressed as a percentage of the window size that

should always be the difference between the starting position of two consecutive

windows. For example, if we have a window size of 6 seconds with hope size of 25%,

then the first window will cover samples from 0 to 6 seconds and the next window

starts from 1.5 seconds and ends at 7.5 seconds. Throughout all the subplots in

Fig. 9 and Fig. 10, it is consistently seen that reducing the hop size improves the

respective performance numbers. Lowering the hop size leads to increase in the

number of samples. Since the performance numbers are improving with decrease

in hop size, despite the increase in number of samples in the dataset, it is a clear

indication that the system is learning better rather than over-fitting. This is also

intuitively congruent because a lower hop size represents the signal in a greater

detail. Therefore, we choose 25% hop size to be the best hop configuration.

4.1.3 Effect of threshold

The ground truth provided by the dataset is activation confidence scores which indi-

cate the probability of an instrument being present in the mix at a particular instant.

Our predictions are also continuous variables between 0 and 1. It is important to

binarize these scores to interpret if the instrument is present or not. A threshold is
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required to binarize these scores for both the ground truth as well as the predicted

labels. We investigate the impact of threshold ranging from 0.2 to 0.7 in steps of

0.05 on the macro f-score and exact match ratio. Fig. 9 and Fig. 10 tell us that

both macro f-score and exact match ratio curves increase till a certain limit and then

decrease. The threshold values maximizing these two metrics are not same, thought

they are close (0.4 and 0.45). Fig. 11 shows the impact of threshold on these two

metrics for the dataset 3s_h25 with hybrid weighted combination strategy. In our

opinion, f-score metric is more important than the exact match ratio for instrument

recognition because of the generic nature of f-score and dataset specific nature of

exact match ratio. Hence we choose 0.4 as the best threshold since it maximizes the

f-score in 3s_h25.

4.1.4 Effect of LRMS merging strategies

We investigate the impact of the two merging strategies : hybrid max combination

strategy and hybrid weighted combination strategy, on the performance of tradi-

tional machine learning method and compare them with a use case where only the

mid channel (which is effectively mono) of the audio is picked and other channel

datasets are discarded. These combination strategies are explained in detail in the

section 3.5 of the Chapter 3. From the Fig. 9, except for 4s_h100, we can see that

hybrid weighted combination strategy results in better performance numbers in all

the dataset configurations than the hybrid max strategy and the use case without

any combination strategy. We select the hybrid weighted combination strategy as

the best combination strategy to incorporate the predictions from LRMS datasets.

This confirms that claims made by [Bosch et al., 2012] that panning information

can be used to improve instrument recognition performance. This means that left,

right, mid and side models contain mutually exclusive important information that

can improve instrument recognition performance when considered together. An-

other important point here is to note that the hybrid max combination strategy is

not effective and it even performs worse than no-combination strategy (when only

the mid channel data is considered). The hybrid max combination strategy assigns

the role of determining the presence of a particular instrument to a particular chan-
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Figure 11: Comparing impact of threshold on exact match ratio and macro f-score
for the dataset 3s_h25 with hybrid weight combination strategy.

nel. This can be disadvantageous because a particular instrument may be present in

different channels in test data and training data. The hybrid weighted combination

strategy considers the predictions from all the channels and performs better than

no-combination strategy and hybrid max combination strategy.

4.1.5 Instrument-wise Performance

We compute the f-score for each instrument using traditional machine learning

method in different window configurations with 0.4 threshold using hybrid weighted

combination strategy with regard to the LRMS datasets. The standard deviation

of instrument-wise f-scores over all the window configurations are not significant

( standard deviation < 0.1). Hence, we plot their mean values across all the win-

dow configurations and display the standard deviations as error bars to indicate how

small they are. This can be seen in both Fig. 12. The key observations here are that

the sounds which are generated by human activity like singing or hitting or plucking

are easier to learn than those which are produced electronically. The fx/processed

sound and synthesizers have the lowest performance numbers as compared to the
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Figure 12: Distribution of instrument-wise f-score across all the window configura-
tions.

rest. The instruments which involve the highest human activity such as drum set,

violin and voice have the highest performance numbers (f-score > 0.9).

At the end of experiment 1, we choose the dataset configuration : 3s_h25, threshold

of 0.4 with hybrid weighted combination strategy as the configuration that gives best

results. This is highlighted using green boxes in Fig. 9 and Fig . 10. Hence, we

would like to continue all our further experiments on this dataset configuration. The

performance numbers obtained using the traditional machine learning method on

the original dataset with this configuration is {exact match ratio= 0.2938, macro

f-score= 0.7241, micro f-score= 0.7784}.

4.2 Experiment 2: Deep learning method on origi-

nal dataset

Unlike in [Li et al., 2015] which uses raw audio as the input, we use the mel-

spectrogram as the input to the CNNs. For each of the LRMS datasets, we train

our models for at least 20 epochs. We retained the parameters from the best con-

figuration that we determined at the end of Experiment 1. For this configuration,

we obtain the performance numbers {exact match ratio= 0.1376, macro f-score=
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0.6578, micro f-score= 0.7253}. To compare with the baseline performance, we also

get the performance numbers for the window configuration used in [Li et al., 2015] :

window of length 1s with 100% hopping (non-overlapping windows). For the window

configuration from the baseline paper, we get {exact match ratio= 0.1540, macro

f-score= 0.6571, micro f-score= 0.7182}. Surprisingly, there is an increase in exact

match ratio despite the decrease in the f-scores when the window configuration is

changed from 3s_h25 to 1s_h100. It would be interesting to study the impact of all

the configuration parameters on the performance numbers for deep learning method

just as we did in Experiment 1. Unfortunately, due to time constraints, we could not

include it within the scope of this project. Fig. 13 shows the instrument-wise f-score

obtained by the traditional machine learning method and the deep learning method

for the best configuration. We notice that the f-scores obtained by deep learning

method is lesser than those obtained by traditional machine learning method for

all the instruments. A possible reason for the relatively low performance of deep

learning method in comparison with the traditional method could be the presence

of samples that are almost silent in the former method. The almost silent samples

are automatically filtered by the Essentia’s music extractor in case of the traditional

method. We wanted to redo the experiment with deep learning method after filtering

out these almost silent samples, but could not do so due to the time constraints. Such

a filtering was not done even in the baseline paper [Li et al., 2015]. Also, we haven’t

done hyper-parameter tuning for the CNNs. Moreover, we use mel-spectrogram as

input instead of raw audio which was used in [Li et al., 2015]. We also need to note

that we have not investigated the deep learning method with raw audio as input.

Mel-spectrogram samples (each of size 43×128 for 1 second of audio) are compressed

representations of raw audio samples (each of size 44100 for 1 second of audio). Since

we lose information during compression, using mel-spectrogram as input instead of

raw audio could possibly lower the instrument recognition performance. Further,

the “best” configuration parameters determined for traditional method need not be

the best configuration parameters for deep learning method. We have not investi-

gated the deep learning results for all the combinations of the dataset configuration

parameters within the scope of this thesis. Despite all these drawbacks, our deep
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Figure 13: Instrument-wise f-score obtained using deep learning and traditional
machine learning methods on original dataset for the best dataset configuration.

learning method performed better than the baseline with regard to the macro and

micro f-scores at a lower computational cost.

4.3 Experiment 3: Using the harmonic and residual

component datasets

It is interesting to compare the instrument-wise f-scores obtained for harmonic

dataset and residual dataset. These f-scores have been determined for both tra-

ditional and deep learning methods and plotted in the Fig. 14. For the sake of

convenience, we represent the model where traditional machine learning method

is used on original dataset as ‘trad_original’ and likewise we extend this naming

convention to other models. Though the trad_original model gives the best over

all results, in the Fig. 14, it is interesting to note that this model doesn’t per-

form the best for all the instruments considered one at a time. Acoustic guitar and

synthesizer labels are identified best by the deep_residual model. Electric bass is
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Figure 14: Instrument-wise f-score obtained using deep learning and traditional
machine learning methods for the best dataset configuration on respective test sets.

identified best by the trad_residual model. Another important observation here is

that the instrument-wise performance does not alter much across all the models, as

illustrated in Fig. 15. This indicates that, despite the different ways in which the

information is learned by each of the models, the intelligence gained with regard to

each instrument is similar across all of them.

For the shortlisted configuration in Experiment 1, we determine the perfor-

mance numbers for instrument recognition using the models - {trad_original,

trad_harmonic, trad_residual, deep_original, deep_harmonic, deep_residual}.

This has been tabulated in the Tab. 1. Surprisingly, in our experiments, the deep

learning method worked best with the residual component and not the original

dataset itself with regard to the f-score. Even, in case of the traditional machine

learning method, the residual component dataset gave the best exact match ratio.

This could be possibly because the residual component instrument sounds could

be the characteristic sound of an instrument. For example, in case of guitar, the

plucking has a distinct sound which is not found in a bowed instrument or a per-

cussion instrument. These residual sounds could therefore help in recognizing the

instruments better. In the next section, we investigate the performance of original,

harmonic and residual models more closely.

So far, our best results are from the trad_original model. Now, we find the number



38 Chapter 4. Experiments and Results

Figure 15: Distribution of instrument-wise f-scores across all the chosen models for
the best dataset configuration on respective test sets.

Use Case Exact Match Ratio Macro f-score Micro f-score
trad_original 0.2938 0.7241 0.7784
trad_harmonic 0.2604 0.7012 0.7590
trad_residual 0.3163 0.7008 0.7773
deep_original 0.1377 0.6578 0.7253
deep_harmonic 0.1404 0.6639 0.7224
deep_residual 0.1550 0.6782 0.7353

Table 1: Performance numbers for original, harmonic and residual component
datasets for the dataset configuration shortlisted from Experiment 1.

of wrongly predicted samples for each instrument in trad_original that are cor-

rectly predicted by trad_residual, trad_harmonic, deep_original, deep_harmonic

and deep_harmonic models for the same dataset configuration. These numbers in-

dicate the potential of predictions of all the other models (other than trad_original)

in improving the overall performance of trad_original model if appropriately com-

bined. Also, not all the correct predictions of trad_original are rendered true in

the other models. An important thing to note here is that we could design a merg-

ing strategy that will pick the best capabilities of trad_original predictions while

incorporating the best capabilities of predictions obtained in other use cases. The

information for merging strategy should come from the performance on training set

as we saw in Experiment 1 in case of LRMS merging strategies. The Fig. 16 shows

the percentage of wrongly predicted samples in trad_original case from the test set
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Figure 16: The percentage of wrongly predicted samples in trad_original case that
are predicted correctly in other use cases for each instrument.

Figure 17: The percentage of correctly predicted samples in trad_original case that
are predicted incorrectly in other use cases for each instrument.

that are predicted correctly in other use cases for each instrument. The Fig. 17

shows the percentage of correctly predicted samples in trad_original case from the

test set that are predicted incorrectly in other use cases for each instrument. The

Fig. 16 and Fig. 17 considers the pairs of trad_original model with all other models

taken one at a time. Likewise, plots could be generated for all other possible model

pairs. These plots could be used to design a sophisticated strategy which could help

us to intelligently select specific models for combining such that the combination

maximizes the overall f-score rather than using the brute force approach of trying

out all the possible model combinations.

Now, we put together the best of the results that we achieved and compare it with the



40 Chapter 4. Experiments and Results

Use Case Window Con-
figuration

Exact Match
Ratio

Macro f-score Micro f-score

trad_original 3s_h25 0.2986 0.7241 0.7784
trad_harmonic 3s_h25 0.2604 0.7012 0.7590
trad_residual 3s_h25 0.3163 0.7008 0.7773
deep_original 3s_h25 0.1376 0.6578 0.7253
deep_harmonic 3s_h25 0.1404 0.6639 0.7224
deep_residual 3s_h25 0.1550 0.6782 0.7353
deep_original 1s_h100 0.1540 0.6571 0.7182
trad_original 1s_h100 0.2572 0.6871 0.7539
baseline 1s_h100 0.2578 0.6433 0.7208

Table 2: Comparison of performance of our methods and baseline.

baseline performance ([Li et al., 2015]) in the Tab. 2. The baseline performance is

obtained by using deep learning method with raw audio in mono format as input and

a window configuration of 1s_h100. We would like to point out that even with the

same window configuration 1s_h100 as in baseline, we achieve a better performance

with our traditional machine learning method with regard to the f-scores and almost

same exact match ratio. Merely, changing the window configuration to 3s_h25

with the traditional machine learning method results in performance improvement

of 15.83% in exact match ratio and 12.56% in macro f-score with respect to the

baseline. Our deep learning methods have not performed well with regard to exact

match ratio, but they too achieved a better f-score than the baseline f-score in almost

all the entries listed in Fig. 2. We need to understand that our deep learning method

is not as computationally complex as the baseline method since we do not use raw

audio as input. Yet, it performs better than the baseline with regard to the f-scores.

It is interesting to see how the deep_residual model outperforms the deep_original

and deep_harmonic models with regard to the f-score. Also, the trad_residual

model gives the highest exact match ratio of 0.3163 among all our use cases, so far.
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4.4 Experiment 4: Combinations of instrument

recognition models

In this final experiment, we investigate the instrument recognition performance with

different combinations of the instrument recognition models that we built so far. We

use the hybrid weighted combination strategy to merge the individual models just as

we did in case of LRMS channels. We consider the models from the set {trad, deep}

× {original, harmonic, residual} for the shortlisted configuration from Experiment

1. The performance numbers are tabulated in Tab. 3. We retain the best performing

model from Tab. 2 and the baseline for comparison. The best performing model

is {trad_ori, trad_har, trad_res, deep_res} with regard to f-score and {trad_ori,

trad_har, trad_res} with regard to exact match ratio. With respect to the baseline

performance numbers, these two models result in an improvement of 14.25% in the

f-score and 24.17%, respectively.

It is interesting to note how deep_residual model when combined with the three

trad models give the highest f-score ever. We also need to note that trad_original

alone performs better than the combination {trad_original, trad_harmonic,

trad_residual, deep_original, deep_harmonic, deep_residual}. The reason why

some model combinations are more effective in improving the performance than

others could be intuitively justified to some extent by studying the plots like Fig.

16. For example, Fig. 16 shows that the deep_residual model predicts the highest

number of wrongly predicted samples in trad_original than compared to others.

So, we could expect an improvement in performance by combining deep_residual

and trad_original models. This method of intuitively guessing a model combination

gets really complex when more than two models are considered. For this thesis, we

ended up combining the individual models randomly. Since, we can not possibly

understand what exactly each of the models are learning, a more sophisticated ap-

proach needs to be designed for identifying and combining specific models which is

out of scope of our project. We could only suggest that such an approach could be

based on an extended set of plots like Fig. 16 and Fig. 17. These plots involved
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Model Combination Exact Match Ratio Macro f-score Micro f-score
{trad_ori, trad_har,
trad_res, deep_res}

0.2834 0.7350 0.7875

{trad_ori, trad_har,
trad_res}

0.3201 0.7282 0.7863

{trad_ori, trad_har,
trad_res, deep_ori,
deep_har, deep_res}

0.2300 0.7221 0.7833

{trad_ori, trad_res} 0.2682 0.7255 0.7764
{trad_ori, trad_har} 0.2515 0.7224 0.7700
trad_ori 0.2986 0.7241 0.7783
baseline 0.2578 0.6433 0.7208

Table 3: Comparison of performance of our hybrid models and baseline.

the combination pairs of all other models with trad_original. Similarly, more plots

could be obtained by considering all other possible pairs of models. Based on these

plots, a more sophisticated approach could then be designed to identify the models

for combining such that the combination improves the overall f-score. In general,

we find that not all the model combinations lead to a performance improvement.

However, the fact that some model combinations result in the better performances

make this line of research worthwhile.
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Conclusion and Future Work

We investigated the task of instrument recognition in multi-instrument audio con-

texts with MedleyDB. In doing so, we employed both the traditional machine learn-

ing method and the deep learning approach and compared their performances. We

experimented with different dataset configurations (analysis window size, hop size

and label binarizing threshold) and alternative data representations. We have con-

sidered two such alternate data representation sets : 1) LRMS channels; 2)harmonic

and residual components of the original audio. After an exhaustive analysis of the

results in the previous chapter, we present the conclusion and pointers for future

work in this chapter. The following points are the highlights of our thesis:

• Efforts in dataset pre-processing could improve the overall instrument recog-

nition performance.

• One of the difficulties with regard to the data pre-processing stems from the

fact that the labels are continuous variables between 0 and 1 which indicate the

probability of an instrument’s presence. This necessitates an analysis with dif-

ferent threshold values to binarize these continuous variables into ‘instrument

present’ and ‘instrument absent’ decisions. In congruence with intuition, we

found that the best threshold value in case of the traditional machine learning

method was 0.4, which is close to 0.5.

43
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• It is helpful to have overlapping segments while splitting the full-length audio

into smaller samples in improving the performance. It is intuitively convincing

since overlapping segments provide richer contextual information.

• We expected that the instrument-wise f-scores will significantly vary with re-

gard to the window size. However, from the plots in Fig. 12, we notice that

the standard deviation for each of the instrument-wise f-scores is low (< 0.1).

This shows that the window size does not critically effect the instrument-wise

performance.

• The traditional machine learning method learns differently than the deep learn-

ing method owing to their fundamentally different ways of operation. Some

of the information learned by these two approaches are mutually exclusive

and their capabilities could be potentially combined to improve the overall

performance.

• Despite the different information that is presented to the learning algorithms

in each of the models, the intelligence (f-score) gained with regard to each

instrument is similar across all of them.

• The sounds produced by human activity like singing or hitting or plucking are

easier to identify than those which are produced electronically.

• Panning information is very helpful in the instrument recognition task. Just

by using the LRMS channel information, which is already present in the stereo

audio, we show that we can improve the overall performance.

• The machines learn new information from the alternative representations of

the dataset that could potentially be used to improve the overall performance.

This is already verified in case of the LRMS component datasets. Mutually

exclusive information is learned by traditional and deep learning methods in

original, harmonic and residual component datasets. If these models are com-

bined appropriately, we could achieve a higher performance.
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• We find that certain combinations of instrument recognition models improve

the performance. But, we are not able to conclude whether the statement

“the perfect model is all models put together” is true or not. We can imagine

an infinitude of such models. For example, just like harmonic and residual

decomposition, we can formulate an infinitude of decompositions and build

different models using each of them. But we will never be able to combine

all of them as they are infinite in number. Hence, we are limited by the

number of models that we choose to work with. We notice in Experiment 4 of

previous chapter that the combination containing all these finite set of models

do not give the best performance. In general, not all the model combinations

improve the performance. However, we illustrate how a very simple approach

of combining specific models can improve the overall performance.

All the highlights mentioned above are a result of a limited set of experiments run

on a single parent dataset. Though these findings are intuitively congruent, at this

point, we can not generalize these inferences. Further in-depth experimentation with

different datasets and perhaps even the combination of other datasets is required to

validate them. Across all our experiments, the highest number of samples that we

got from MedleyDB was 52,277 for the window configuration 1s_h50. This number

is very small as compared to the millions of distinct audio files in the world. In this

context, MedleyDB, as a dataset, is too small to make any general deductions out

of our experiments.

There is definitely a lot more that can be done from this point in improving the

instrument recognition performance. We would like to point out certain aspects

related to this research work that we would have loved to try out, but couldn’t do

so due to the time and resource constraints.

• We used the default configuration provided by Librosa [McFee et al., 2015] to

split the audio into harmonic and residual parts. This split function assigns

energy to each time-frequency bin based on whether a horizontal (harmonic) or

vertical (residual) filter responds higher at that position. A margin parameter
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determines the percentage excess of the energy responded by the horizontal

filter with respect to the vertical filter to generate the split. The default

configuration for the split function is unit margin. It will be interesting to

analyze the results obtained for other margin values.

• One of the main advantages of MedleyDB dataset is the availability of the

instrument-wise stems. This undoubtedly is a very rich source of information.

We have not made use of it in this thesis. However, it could be helpful to train

the systems with these stems so that they can learn every instrument sound

better and hence improve the overall instrument recognition performance. One

could also think of involving these stems as a data augmentation strategy.

• The experiments using deep learning method contained samples which are

almost silent. We should have discarded these low energy samples. By the time

we realized this, it was too late. In case of the traditional machine learning

method, this was automatically handled by the Essentia’s music extractor

which skipped these low energy samples. This could also explain the low

performance of our deep learning method. The deep learning method needs

to be tested after filtering out the samples having energy below a particular

threshold.

• We chose the ‘best dataset configuration’ obtained with the traditional ma-

chine learning method and used this configuration even for the deep learning

method. This configuration need not be the best configuration for the deep

learning method since the way these methods learn are fundamentally differ-

ent from each other. It could be worthwhile to repeat the Experiment 1 in

the previous chapter for the deep learning method. Also, hyper-parameters of

the CNN need to be tuned to improve the performance of the deep learning

method.

• Experiment 4 revealed that the combination of individual instrument recog-

nition models with a hybrid weighted strategy gives the best performance. It

will be interesting to investigate all such combinations (even including those
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with different window configurations) and then find the combination which

gives the best results. It will be worthwhile to design a sophisticated method

to identify specific models for combining such that the combination maximizes

the overall f-score rather than using the brute force approach of trying out all

the possible combinations.

• In our deep learning implementation, we used fixed length filters.

[Pons et al., 2017] reported an improvement in performance by using a set of

filters with different length. This could also possibly improve our performance

numbers and might be worthwhile to try.



List of Figures

1 Performance of Deep Learning Vs. Traditional Machine Learning

Algorithms. Image taken from [Mahapatra, 2018] . . . . . . . . . . . 8

2 Performance of instrument recognition with isolated notes. [Table

taken from [Eronen et al., 2001]] . . . . . . . . . . . . . . . . . . . . . 9

3 Performance of instrument recognition with monophonic phrases.

[Table taken from [Eronen et al., 2001]] . . . . . . . . . . . . . . . . . 9

4 Comparative view on the approaches for recognizing pitched in-

struments from polytimbral data. Asterisks indicate works which

include percussive instruments in the recognition process. poly-

phonic density (Poly.), number of categories (Cat.), type of data used

(Type), the name of the data collection (Coll.), the classification

method (Class.),imposed a priori knowledge (Apriori), any form of

pre-processing (PreP.) and post-processing (PostP.), and the number

of entire tracks for evaluation (Files). Abbreviations for the evalua-

tion metric refer to Accuracy (Acc.) and F-measure (F). Furthermore,

the legend for musical genres include Classical (C), Pop (P), Rock (R),

Jazz (J), World (W), and Electronic (E). The three blocks are pure,

enhanced pattern recognition, and template matching with respect to

the recognition approach. [Table taken from [Fuhrmann et al., 2012]] 11

5 Baseline performance of instrument recognition for MedleyDB. [Table

taken from [Li et al., 2015]] . . . . . . . . . . . . . . . . . . . . . . . 14

6 A deep CNN architecture used by [Han et al., 2017] for instrument

recognition. [Figure taken from [Han et al., 2017]] . . . . . . . . . . . 15

48



LIST OF FIGURES 49

7 ConvNet structure proposed by [Han et al., 2017]. [Table taken from

[Han et al., 2017]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Confusion matrices for original (top left), sinusoidal (top

right) and residual (bottom) datasets. Figures taken from

[Shenoy Kadandale, 2018] . . . . . . . . . . . . . . . . . . . . . . . . 25

9 Macro f-scores obtained using traditional machine learning method

on test set of the original dataset with different configurations. The

shortlisted best configuration - 3s_h25 is highlighted in green. . . . . 29

10 Exact match ratio obtained by traditional machine learning method

on test set of the original dataset with different configurations. The

shortlisted best configuration - 3s_h25 is highlighted in green. . . . . 30

11 Comparing impact of threshold on exact match ratio and macro f-

score for the dataset 3s_h25 with hybrid weight combination strategy. 33

12 Distribution of instrument-wise f-score across all the window config-

urations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13 Instrument-wise f-score obtained using deep learning and traditional

machine learning methods on original dataset for the best dataset

configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

14 Instrument-wise f-score obtained using deep learning and traditional

machine learning methods for the best dataset configuration on re-

spective test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

15 Distribution of instrument-wise f-scores across all the chosen models

for the best dataset configuration on respective test sets. . . . . . . . 38

16 The percentage of wrongly predicted samples in trad_original case

that are predicted correctly in other use cases for each instrument. . . 39

17 The percentage of correctly predicted samples in trad_original case

that are predicted incorrectly in other use cases for each instrument. . 39



List of Tables

1 Performance numbers for original, harmonic and residual component

datasets for the dataset configuration shortlisted from Experiment 1. 38

2 Comparison of performance of our methods and baseline. . . . . . . . 40

3 Comparison of performance of our hybrid models and baseline. . . . . 42

50



Appendix A

Reproducibility

The repository containing the source code for this research work is made available

on GitHub. All the results that we reported in Chapter 4 could be reproduced and

validated by implementing this code. The code also contains a readme file with

all the information that may be helpful for executing the code. The performance

numbers in case of the deep learning method, published in this work are obtained

by using the weights that are learned after a minimum of 20 epochs 1.

www.github.com/kvsphantom/instrument-recognition-polyphonic

1epochs are defined as the number of times the learning algorithm runs through the complete
training dataset
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